Interessante Literatur zum Thema Fischzucht & Lebendfutter mit dem Fokus auf der Anwendung von Copepoden


Ich verweise hier lediglich auf die Quellen (Literaturhinweis) und stellle keine Literatur oder Downloads zur Verfügung.

Allgemeines zum Thema Fischzucht (Nachzucht mariner Zierfische)


Marine Ornamental Species Aquaculture. Editor(s): Ricardo Calado, Ike Olivotto, Miquel Planas Oliver, G. Joan Holt. First published:31 January 2017, John Wiley & Sons Ltd.


Job, S. (2011). Marine Ornamental Fish Culture. In Recent Advances and New Species in Aquaculture (eds R. K. Fotedar and B. F. Phillips).

Nachzucht mariner Zierfische mit Anwendung von Copepoden


I. Olivotto, F. Capriotti, I. Buttino, A.M. Avella, V. Vitiello, F. Maradonna, O. Carnevali, The use of harpacticoid copepods as live prey for Amphiprion clarkii larviculture: Effects on larval survival and growth, Aquaculture, Volume 274, Issues 2–4, 2008, Pages 347-352


I. Olivotto, I. Buttino, M. Borroni, C.C. Piccinetti, M.G. Malzone, O. Carnevali, The use of the Mediterranean calanoid copepod Centropages typicus in Yellowtail clownfish (Amphiprion clarkii) larviculture, Aquaculture, Volume 284, Issues 1–4, 2008, Pages 211-216


Maria Vivian Camacho Grageda, Tomonari Kotani, Yoshitaka Sakakura, Atsushi Hagiwara, Effects of feeding copepod and Artemia on early growth and behaviour of the self-fertilizing fish, Rivulus marmoratus, under laboratory conditions, Aquaculture, Volume 281, Issues 1–4, 2008, Pages 100-105


B. Randazzo, L. Rolla, C. Ofelio, M. Planas, G. Gioacchini, A. Vargas, E. Giorgini, I. Olivotto, The influence of diet on the early development of two seahorse species (H. guttulatus and H. reidi): Traditional and innovative approaches, Aquaculture, Volume 490, 2018, Pages 75-90


Laidley, Charles & K Callan, Chatham & Burnell, Andrew & K M Liu, Kenneth & Bradley, Christina & Bou, Marta & Shields, Robin. (2008). Development of aquaculture technology for the flame angelfish, Centropyge loriculus. Regional Notes: Center for Tropical and Subtropical Aquaculture. 19.


DiMaggio, M. A., Cassiano, E. J., Barden, K. P., Ramee, S. W., Ohs, C. L. and Watson, C. A. (2017), First Record of Captive Larval Culture and Metamorphosis of the Pacific Blue Tang, Paracanthurus hepatus. J World Aquacult Soc, 48: 393-401


Chaoshu Zeng, Luchang Shao, Amanda Ricketts, Jonathan Moorhead, The importance of copepods as live feed for larval rearing of the green mandarin fish Synchiropus splendidus, Aquaculture, Volume 491, 2018, Pages 65-71


Isaac S. Lee, Cortney L. Ohs, Jason S. Broach, Matthew A. DiMaggio, Craig A. Watson, Determining live prey preferences of larval ornamental marine fish utilizing fluorescent microspheres, Aquaculture, Volume 490, 2018, Pages 125-135


Lília P. Souza-Santos, Cintia G. Regis, Roberta C.S. Mélo, Ronaldo O. Cavalli, Prey selection of juvenile seahorse Hippocampus reidi, Aquaculture, Volumes 404–405, 2013, Pages 35-40


L. Wittenrich, Matthew & Turingan, Ralph & Cassiano, Eric. (2012). Rearing tank size effects feeding performance, growth, and survival of sergeant major, Abudefduf saxatilis, larvae. AACL Bioflux. 5. 393-402.



Copepoden: Kultivierung, Nährwert, Eigenschaften & Nutzen


D. S. Corner, E & C. M. O'Hara, S. (2019). The Biological chemistry of marine copepods / edited by E. D. S. Corner and S. C. M. O'Hara. SERBIULA (sistema Librum 2.0), Oxford Science Publications.


Støttrup, J.G.. (2006). A review on the status and progress in rearing copepods for marine larviculture. Avances en nutrición acuicola. 62-83.


Guillaume Drillet, Stéphane Frouël, Mie H. Sichlau, Per M. Jepsen, Jonas K. Højgaard, Almagir K. Joarder, Benni W. Hansen,
Status and recommendations on marine copepod cultivation for use as live feed, Aquaculture, Volume 315, Issues 3–4, 2011,
Pages 155-166.


Tenaw G. Abate, Rasmus Nielsen, Max Nielsen, Guillaume Drillet, Per M. Jepsen, Benni W. Hansen, Economic feasibility of copepod production for commercial use: Result from a prototype production facility, Aquaculture, Volume 436, 2015, Pages 72-79.


Nancy H. Marcus and Jeffrey A. Wilcox (2007). A Guide to the meso-Scale Production of the Copepod Acartia tonsa
Florida State University, Department of Oceanography, Biological Oceanography.



Brie L. Sarkisian, Jason T. Lemus, Angelos Apeitos, Reginald B. Blaylock, Eric A. Saillant, An intensive, large-scale batch culture system to produce the calanoid copepod, Acartia tonsa, Aquaculture, Volume 501, 2019, Pages 272-278.


Diana Chilmawati,  Suminto, The Effect of Different Diet of Phytoplankton Cells on Growth Performance of Copepod, Oithona sp. in Semi-mass Culture, Aquatic Procedia, Volume 7, 2016, Pages 39-45.


M. Dean Kline, Charles W. Laidley, Development of intensive copepod culture technology for Parvocalanus crassirostris: Optimizing adult density, Aquaculture, Volume 435, 2015, Pages 128-136


Thomas Allan Rayner, Niels O.G. Jørgensen, Elisa Blanda, Cheng-Han Wu, Cheng-Chein Huang, John Mortensen, Jiang-Shiou Hwang, Benni Winding Hansen,cBiochemical composition of the promising live feed tropical calanoid copepod Pseudodiaptomus annandalei (Sewell 1919) cultured in Taiwanese outdoor aquaculture ponds, Aquaculture, Volume 441, 2015,
Pages 25-34


Kultivierung, Eigenschaften und Anwendung von Mikroalgen in der Aquakultur


Jack McLachlan, Some considerations of the growth of marine algae in artificial media, Canadian Journal of Microbiology, 1964, 10(5): 769-782.




LeRoy Creswell (2010). Phytoplankton Culture for Aquaculture Feed. SRAC Publication No. 5004


Cultivation of marine, unicellular algae

I. Laing, Ministry of Agriculture, Fisheries and Food Directorate of Fisheries Research. Laboratory Leaflet Number 67, 1991


G. Baptist (1993). Growing Microalgae to Feed Bivalve Larvae. NRAC Fact Sheet No. 160

Kaspar, Heinrich F, et al. "Continuous Production of Chaetoceros Calcitrans In a System Suitable for Commercial Hatcheries." Aquaculture, v. 420-421, pp. 1-9.


Michels, M.H.A., van der Goot, A.J., Vermuë, M.H. et al. (2016). Cultivation of shear stress sensitive and tolerant microalgal species in a tubular photobioreactor equipped with a centrifugal pump. J Appl Phycol 28: 53.


Patil, V., Källqvist, T., Olsen, E. et al. (2007). Fatty acid composition of 12 microalgae for possible use in aquaculture feed.
Aquacult Int 15;1.


Huerlimann, Roger & de Nys, Rocky & Heimann, Kirsten. (2010). Growth, Lipid Content, Productivity, and Fatty Acid Composition of Tropical Microalgae for Scale-Up Production. Biotechnology and bioengineering.


Imke Lang, Ladislav Hodac, Thomas Friedl and Ivo Feussner (2011). Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biology 11:124.


Silvana Ohse, Roberto Bianchini Derner, Renata Ávila Ozório, Rafaela Gordo Corrêa, Eliana Badiale Furlong, Paulo Cesar Roberto Cunha (2015). Lipid content and fatty acid profiles in ten species of microalgae. Idesia, ISSN 0073-4675, Vol. 33, Nº. 1, 2015,  93-101.


Pedro Seixas, Paula Coutinho, Martiña Ferreira, Ana Otero (2009). Nutritional value of the cryptophyte Rhodomonas lens for Artemia sp., Journal of Experimental Marine Biology and Ecology, Volume 381, Issue 1, Pages 1-9.


Drora Kaplan, Zvi Cohen, Aharon Abeliovich (1986). Optimal growth conditions for Isochrysis galbana, Biomass, Volume 9, Issue 1, Pages 37-48.


J. Marchetti, G. Bougaran, L. Le Dean, C. Mégrier, E. Lukomska, R. Kaas, E. Olivo, R. Baron, R. Robert, J.P. Cadoret (2012). Optimizing conditions for the continuous culture of Isochrysis affinis galbana relevant to commercial hatcheries, Aquaculture, Volumes 326–329, Pages 106-115.


E. Ponis, G. Parisi, G. Chini Zittelli, F. Lavista, R. Robert, M.R. Tredici (2008). Pavlova lutheri: Production, preservation and use as food for Crassostrea gigas larvae, Aquaculture, Volume 282, Issues 1–4, Pages 97-103